TÜV Rohs Conform
Coaxial cables 50 Ohm

Coaxial cables 50 Ohm

Coaxial cable with diameter from 1.8mm to 14.6mm diameter and 50 Ohm characteristic impedance

Coaxial cable by the meter: 

Just choose your desired length, we wrap and cut from the manufacturer's drum 

Coaxial cable rings, also called coaxial cable role: 

Commercially available cable lengths, wrapped as a ring or role 

Coaxial cable on drum: 

Manufacturer bundles wound on wooden drum, plastic drum or role of cardboard 

Coaxial Cablel H 2010 - 50 Ohm

Art-Nr: 101085
Coaxial Cable H 2010 - 50 Ohm 
2,75 EUR - 2,95 EUR
from 2,75 EUR pro Meter
incl. 19 % VAT excl. shipping costs

Ecoflex 10 Coax Cable 50 Ohm up to 6 GHz

Art-Nr: 101086
Coaxial Cable Ecoflex10 - Double shielded - Foil and sheath ...
3,28 EUR - 3,39 EUR
from 3,28 EUR pro Meter
incl. 19 % VAT excl. shipping costs

SeaTex 10, SHF 2, Coax Cable 50 Ohm, 8 GHz

Art-Nr: 1010884
Coaxial Cable SeaTex 10 SHF 2, 50 Ohm, 8 GHz  FRNC / LSNH,...
5,43 EUR - 6,09 EUR
from 5,43 EUR pro Meter
incl. 19 % VAT excl. shipping costs

Ecoflex 10 Plus 50 Ohm 8 GHz

Art-Nr: 101087.P
Coaxial Cable Ecoflex 10 Plus Ecoflex10 Plus is a highly flexible,...
3,65 EUR - 3,80 EUR
from 3,65 EUR pro Meter
incl. 19 % VAT excl. shipping costs

Ecoflex 10 Plus HTX 50 Ohm

Art-Nr: 101087.F
Cable Ø = 10,2 mm - 50 Ohm - 0,14 dB @ 1 GHz / m - f max. = 8...
4,94 EUR - 5,25 EUR
from 4,94 EUR pro Meter
incl. 19 % VAT excl. shipping costs

Ecoflex 15 Coax Cable 50 Ohm

Art-Nr: 101088
ECOFLEX® 15 is a flexible, very Low Loss 50 Ohm Coax...
7,53 EUR - 7,98 EUR
from 7,53 EUR pro Meter
incl. 19 % VAT excl. shipping costs

Ecoflex 15 Plus, Coax Cable 50 Ohm, 8 GHz

Art-Nr: 101088.P
Coaxial Cable Ecoflex 15 Plus   Data  sheet  ...
8,08 EUR - 8,78 EUR
from 8,08 EUR pro Meter
incl. 19 % VAT excl. shipping costs

Ecoflex 15 Plus HTX Coaxial Cable

Art-Nr: 101088.F
Ecoflex 15 Plus HTX Coaxial Cable 
8,44 EUR - 9,47 EUR
from 8,44 EUR pro Meter
incl. 19 % VAT excl. shipping costs

Cellflex Cable LCF 12-50 J 50 Ohm

Art-Nr: 1010895
Cellflex Cable LCF 12-50 J 50 Ohm 
5,06 EUR - 5,50 EUR
from 5,06 EUR pro Meter
incl. 19 % VAT excl. shipping costs

Coaxial cable, coaxial cable, 50 ohms

Energy losses in coaxial lines

There are no lossless cables, but there are low loss cables. The attenuation or loss of a cable depends on many factors. It is obvious and understandable that a thicker conductor has less damping than a thinner one. The conductivity of a pipe also depends on the material. Copper has better conductivity than aluminum or iron. With decreasing temperature, the conductivity increases, so the attenuation becomes lower. The longer a line is, the greater the losses in it. And so there are many more factors in how low-loss a line can be.

A coaxial cable also consists of two conductors, namely the inner conductor, also called the soul and the outer conductor. For several reasons, such as the Einstrahlfestigkeit or vice versa, so the radiation, often multiple line layers are arranged directly above each other to reduce these unwanted radiation to the inner conductor. For coax cable, only the inner conductor is the actual transporter of signals. The outer conductor has two functions, namely to protect the inner line against unwanted radiation and also serves as a second line to close the circuit. Only within a closed circuit can electricity flow.

Coaxial cables are used almost exclusively for the transport of alternating current and only rarely for direct current. And just as the word AC already implies the change, the signal to be transported constantly changes its polarity. It does not matter at all how the signal in the inner conductor changes. The frequency of alternating polarity is of crucial importance and is reported and measured in Hertz. At 50 hertz, like the alternating current from our power grid, the polarity changes 50 times a second. For radio transmissions such as LTE, assuming 800 MHz, the polarity changes 800 million times per second, and for WLAN in the 2.4 GHz range, there are already 2400 million polarity changes per second. And during this frequent change, electrons in the lines are moved back and forth. This electron movement generates friction and friction in turn generates heat. So you also have to make arrangements for the heat dissipation in the cable.

To prevent the inner and outer conductors from touching each other in the coaxial cable and resulting in a short circuit, they must be insulated from one another. And that's not all, because the distance between inner and outer conductor must necessarily remain constant from the beginning to the end of the coaxial line, otherwise the characteristic impedance or the impedance of the cable would change. It would create chaotic, uncontrollable conditions in the cable, if it would come to irregularities or different insulation materials would change within the same line. And the quality of this insulation, which is referred to as a dielectric, also depends on the quality of the coaxial cable. Air as a dielectric has a very high quality, but is not feasible in coaxial lines. Therefore, plastics are used which ensure a constant distance between inner conductor and outer conductor and at the same time have to be a good insulation. The more these plastics can be oxygenated, the lower the losses in the cable. Here are also physical limits, because otherwise the plastic is unstable and the constant distance between the inner and outer conductor can not be guaranteed. Also, the heat dissipation decreases with increasing electron movement. So there are a lot of factors to consider in cable manufacturing to create a reproducible product of consistent quality. Here many compromises have to be made, because the coaxial cable is supposed to be affordable.

Generally speaking, the thicker a coaxial cable is, the smaller its attenuation, and higher its electrical and mechanical strength, with some minor limitations. With increasing diameter, the cable price almost always increases, because more material is processed.